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The research which was conducted under this contract fell mainly into

three categories: gain switching, injection locking, and photon statistic3.

In addition, some work in the foundations of radiative transport theory

and spectroscopy *vas also performed. A brief summary of this work %%ill

now he given.

I. Gain Switching

The use of a metastable state as the upper laser level offers the

possibility of obtaining large inversions and thereby storing large amounLs

of energy in the lasing medium. The problem associated with this is that

the linear gain which one obtains from the transition from this level

to the lower laser level is quite small. The possibility of "dumping"

the energy stored in the metastable level by the application of an external

1
field was investigated. The external field, by inducing a dipole moment,

increases the transition probability between the two levels. One can,

therefore, obtain a large inversion and then switch on the field to obtain

a good value for the linear gain.

An estimate of Ml, E2, and induced El transitions (for an applied

electric field of 105 Vcm - ) indicated that transitions satisfying the

following two requirements would be good candidates for gain switching:

A) they are forbidden for Ml radiation

B) they occur at wavelengths of 1 to 10 .im

Vibrational transitions in homonuclear diatomic molecules satisfy these

conditions. For If. one can obtain a gain coefficient, K, of

AN -2 -l
K = -N (S x 10 2) cm

where AN/4 is the relative population inversion Litd the electric field is

a imed to be 105 V/cm.
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If one tries to use electric fields much larger than those considered

above, breakdown will occur. For the alternating electric field produced

by a giant laser pulse it is possible to obtain much higher values of the

field. This would allow the gain to be increased by two orders of magnitude.

Spin forbidden transitions were also examined to see if they would be

of use in gain switching schemes. In particular che transition from thc

.,. state of molecular oxygen to the ground state was considered because

this state can be produced in chemical reactions so that a practical

pumping scheme is available. An inhomogeneous ,i:tinetic field will cause

spin multiplet intercombination and, therefore, make spin forbidden transi Lt,.s

possible. Actual calculations for the ,N - oxv:yoe1 system, however, showed

that the necessary magnetic fields were not practically obtainable.

II. Injection L.ocking

There are applications where it is necessary to have a highi energy

laser with a particular polarization. Due to practical considerations

it is not always possible to use intracavity polarization selective elements.

The laser output is then ,npolari-zated, or because of resonator geometry

or reflective properties of the intracavity optical surfaces, the laser

may have a prefered polarization which is usually not known apriori, and

in some cases, is time varying.

It is possible that injection locking, which has been successfully

applied to frequency control lasers, may also be used for polarization

control. In fact, experiments have been performed where a polarized

output was obtained by injection locking an unpolarized rare gas halide

laser. We wahted to determine if polarization selection by injection

locki will work for a wider range of lasers.



We have extended the semiclassical laser theory to include laser

operation with different polarizations and with an injected signal. Wfe

considered two problems. The first is the effect of a polarized injected

signal on an unpolarized laser. The second is the effect of a polarized

injected signal on a laser that has a prefered polarization. We wanted to

know if the injected signal can force the laser into operating with a different

polarization. This latter case will be of interest in the scaling of lasers

by using a multiplex array. It may also find applications in lasers ;ith

annular gain regions which at present operate with axicon type resonators

that produce outputs that have tim:e c varying po!a:riz:tions. Our goal was

to obtain as understanding, of the mechanisms underlying polarization control

via injection locking. As such, we have not dealt with toe more computa-

tionally complicated though possibly more useful cases of operation in the

strong-signal regime and with an unstable resonator. We are, at present,

investigating the above two problems.

Our results indicate that, except when the injected signal and free

running laser polarizations are orthogonal to each other, it is not possible

to rotate the laser polarization so that it lines up with the injected

signal Polarization. However, the difference in polarization may be made

arbitrarily small by increasing the injected signal strength. The reaso.

for 5 ,) for finite injected signal strength and 0<0 v</2 may be seen h..

resolving the injected signal electric field into m component that is

parallel to the free running laser polarization and component that is

perpendicular to it. The parallel component has a greater effect per

electric field strength than the perpcndicular component because of the

higher laser gain in that direction. Consequently, the final laser

polarization will always be between the free running laser and the injected

signal polarizations. When . = ;r/2, there is no parallel component ot

the injected original and therefore it is possible to make 0 = 0.



If we consider the situation where we have an array of lasers and

where each laser has a different preferred polarization (i.e. the output

of the free running laser array is unpolarized), then the distribution

of polarization directions of the phase I ocked array , i I have a width

given by

2 Ac

where Aa is the difference in the gain for the co.ponents of the polarizacii..

parallel and perpendicular to the injected polarization, Ic = c/2L where

L is the length of the laser, I is the intensity 0:: tihe laser inside

the cavity, and 4 is the intensity of the injected signal outside the cavi....

III. Photon Statistics

Our group has had an interest in photon stl.ti.tics problems for sev-.a[

,ears. Recent work includes a generalization oC ?revious results for a

single mode m-photon absorbtion process to an arbitrary number of modes.

Two-photon lasers were also studied. The photon statistics of such a

laser with a loss mechanism simulated by two-level atoms which absorb

a single photon was found. 3 This was then used to investigate nonclassi:ai

4
effects in the light emitted. Two-iuode lasers were investigated as well

and the intensity correlations for a laser of this type with coupled

transitions were found.'

IV. Other Work

Fundamental work in spectroscopy was also done. It was shown that

time-delayed measurements allow one to obtain accuracy greater than the
6

natural Iinewidth in the measurement of spectral lines. The found, tions

of the theory of radiative energy transfer were also the obj t of a stu_.,.



Wave propagation in a random medium was considered and various quantities

appearing in the usual phenomenological theory were related to the stochastic

properties of the medium.

' ~.'~4 .z
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scattering tensor miay be estimated in terms or' ati nients are mel Ms' vibrat ional i ransinlons in lino-
average transition energy' -V-' a nd typical diplole matrix nuclear diatomic molecules.
Celent 'I as tollows lionionuclear nmolecuiles like 11I, do riot Possess a

transition dinoie monicw o either vibrational or rota-
- 1)-Da) (2) tional transitions. Furthermore their miacntetic dipole

moment does niot depend on the internuclearseaa
(b ID -_IMa) 10-,1 2 t4~l~ ion: hcfle v-ibra'tionfal transitions cannoit()t occur for

(, 2 - Al 3 N1I I-radiation either. These transitions are observed

Herewe aveassued n eternl eectic feldI,'however as electric quadrupole transitions, in Ranian
Herewe aveassmedan xteral lecricfied "scattering and as field induced dipole transitions [5.61.

I05 V cmi - 1,a typical tratnsition ettcg 4 Vibrational transition with -lu =I are stroilest and
X 10- 2 erv Cori espondling to radiation at optical are the itl]% ones observed so far. T:asita :::1C:1en

waveene IiN 0. pit ad a ipoe mtrixeleent for I-Nu I > I are found to be at least one order of niag-
of tile Order ot' mlagitIude d Ca,,. E'stimates ot' this nitude smaller [7[
tyPe lead to rigorous bounds onl the scattering tensorThroainlseconuesbydae
in all eases where thle transition miatrix element
(blala) can be calculated in terms of diasional miatrix _V =--2 0-branch.
celtnenis 141 . This occurs tor example for atomic _V =0 Q-branch.
transitions between fine splitting components in LS- _V =+2 S-branch.
Coupling and for vibrational transit ions in miolecules. For 11, the transition between the first vibrational
Q tttaN be appreciably larger than estimated in (3t if stt n h rudtt cusa aee-ho

there are strongly resonant levels r close to any of the X= 2.4 gam. Ihlence we can expect thie field induced
levels a or b. In general however 13) gives thle correct transition rate to be at least one order of ingnituic
order of magnitude for atomic systemis.

For %IlI transit ions the tmagnet ic dipole nitottent is lre hnteqarpl aeI As motivated above we nowy turn to a calculation
a multiple of the Bohr magnelon 13 31: of the field induced rate [21 . Let us First recall the

'I, 'h/2,nc = W,2 ;'hc)ca1 - 3.6 X 10- 3Jd (4) physical mechanism of field induced transition in
itonionuclear molecules. Thle external field %% Ill in-

Finally for E2 transitions the rate is obtained as bol- duce a dipole moment in thle electronic charge- cloud.
- -lows [31: Neglecting numerical factors of" order uinity This induced moment will depend on the int-ernuclear

we replace thle dipole tnatrix element dI by' the electric separation. and is hience coupled ito the vibrational
quadrupole moment Q arid divide by the wavelength motion of the molecule. The r'otational selection roles
Nof the radiation emitted. Sinice Q2 equals roughIly a stemn from thle fact that in thle transitin one qiian morn
typical iritra-atornic distance times thle dipole lnmeit of angular momeritumn is tranisferred to tile Photon
we obtain for the corresponding matrix elemietti emitt'ed anid one quantum is exchanged with the ex-

"11.2 I/=NIan,,I 10-4 1 for 'N =0.5 i gn 15) ternal field.

In a working gain switched laser, application of tlie ex- Tion mome tris given by o [hi luc,

tcr na I field shotuld increase thie gain coefficient oft fite nm ettensgvnb (1

ntediuin at least by an order of magnitude. It is clear I-~ (~!Dl''rl
from) ilhe estimiates given above that we should look 2J + I ~
for i rantsit ions wvhic h meet the followvilng reqiuirements. / 4 * + I '

a I they are forbidden for MI 2 rid iat ionIi eq. f4W + n..-- _. 1 1
2  J, =.

b) t hey occur at wavelengths of' I to 1t0 Pin. (eqis.

(3),~~A 5H2 JJ+ I)
ltmcrcasimc the wavelength by an order of' ii 1nitudc 1 52 + I1)(21 - I V- J, =, 1'1
will dlecrease the rate for 1:2 retail ) 11 radiation
by two orders and increase tilie rate kit. 11 1 relative 2U :j .1=I2

to E.2 radiation by tile samte factor. Thiese require- , ~ j +IIt )
152 +1(2
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honro-Table I
Lxperimtrtnal and tiheoretical results tor the m .,i.'lts tti. elemetnts ol tile moltecules 11, and N2

7,n113 or rota-
etie dipole -12 m) exp. titer. exp. theor.

sepa fra.,i 025cO 1.2161 1.1 11t 0.5 161. 0.48, 0.1817

bserved -YO -5Cu1
3

) 0.7 1141. 0.9 1151 0.7- 16], 0.5 4,0.38 II1-

in Ramnan X-1 11(
3 

C111- I 4A16 2.36
itions [5.61. lec0) r arxo e-- t le.,,cefcin stnLt'n

o*l'rsest arid
11 monments I leealad. ylae.iti eeetsoth electrnc TeLa ofiintKsthnve b

rder of' mag- groundstate polarisabilities a(R ) arid (ri (R =Iter- \
nuclear distance) taken between tile vibratitonal levels k = - -

C: considered, at anid yare defined by%~c.

020 +0 Q=f a .rk
=- (S5 X 10 c tn1

whtere X
where A'Vis tlte relative population Iversioni.

,rational 0 Keeping this quannltv fixed tile Pain ts minencu;
leneth of arc tlte components of' tlte electronic polarisahility of the density V' in the pressure broadened reatnie.
induced terisor. Transitions tn thie Q-branclt A J =Oi are since tile linewidth is proportional to,\*
ria-nitode strotigest. Neglect ing contributions frott -y) which Higher gains can be obtained by increi,:m- tlte

are of' tile sanme order of nrainitide Is probable errors strength of the applied field P'. For a stat! :old olc.-
.l1culation in 001o we obtain for Q-transitions thre spontaneous tInc breakdowtn will occur at field strentlet itrer :an

Scll it raesthle value of' 10 V/cmi considered here. For the a ter-
it ion in nating electric field produced by a giant laser puise

wil in- -2 3 mutch higher valtues are possible. For examnie a ! eld
.irge cloud. , 1.2strength of 10-) V/cm would correspond to a laser In'
itternuclear 0. X 10- sI fo II tensitv of' 2 X 108 WV.cm 2. but int ensittes or tip to)

'rational . r . 10 1t) W 'cnnL have been achieved for ptcoseccotwia se
oction rules 1 .4 X 10-6 S- I for N,, without optical breakdown [91.
lte quantumn In order to establish the feasibility of gaim sv.k tchtne
: ,Photon both at 10 I V~im using a high power laser ptilse as tile sourlc oft our e~ec-
fit thle ex- tInc field. we use the following expression t- r the :IxI-

Although these rate, ;ire rather low we still anticipate tioiainaditeeite states a andt - *ie

A transi- reasornable gains since the field induced lines uinder go our switchtitng laser srgnai i 20
collisional niarrowirwL. Tlnis pliettoiteot occurs itf the
motlectile undergoes mtany collisiotns whlile 1 ravelin 'alt)) a) + (rI--- "+'I__ a) e.,O
over distances (ifabout otte wivelength It 1. A-s a ~ \j ~+ /IV(
result rthe lines are pressure broadened with wid th well
belo rthe dope it tdensities of I aiiaeat. (rin - 1 a) "O Jr.l)J, xpeininia ad teorticl dlaon rthe collision 1-a- Er 0
narrowed littewidtlt are available for I I, F~ronm ref.

= -2 61 we take tire value ot pressure broadettru", coelfi- where F( 1) denotes the positive arid necart' a narts ot
J'J-2cient the injected field. atid vo is the freqniercs ot the miect-

I) = 2.1 X ~~~ V~~atrtasat ~ed field. e.()w e la ~eiice ~ a il
J'=.J+10 Aliligt.c

Y J . Frm eq (6 we ee tat fle njeced h,,r 1c 5
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rime-delayed measurenient of naturalv broadened transitions can lead to a narrovming
of the linewidth. Moreover, under appropriate conditions, it may result in the appearance
of a dip at the line center. An analysis of time-delaved measurement thus pro% ides a
theoretical basis for useful optical techniques yielding high spectral resolution. Such an)
analsis is presented in this %ork.

1. INTRODUCTION lay betveen the system preparation and the obser-
vation of emitted radiation.

It has traditionally been one of the main en- Knight and Coleman' have shown that a similar
deavors of spectroscopists to develop measurement result may be achieved in a system of two-level
techniques yielding ever-higher resolution. In opti- atoms weakly driven by an expotientially deca i
cal experiments the precision of the measurement is laser pulse. In ibis system, although the lower le% -
often limited by the broadening of the linewidth el is stable, the exponential decay of the pulse am-
caused by the interaction of the system under in- plitude has the same eftfect on the fluorescence
vestigation with its environment, such as Doppler spectrum as would the exponential decay of the
effect, collisions, and spontaneous decay. It might lower level. Metcalf and Phillips' have sho%n that
seem that, after the Doppler- or collision- despite the loss of signal associated with time-
broadened width has been eliminated using one of delayed detection, it may still prove %ery useful in
the many schemes introduced in the past for that a number of applications. For example. as em-
purpose.' the natural linewidth remains the ulti- phasized in Ref. 2. this technique would allow us
mate limit to high-resolution spectroscopy. to measure the difference (j,,a - yb ) directly, arid

Recently. we have proposed and analyzed some therefore to a much higher precision than could be
spectroscopic techniques which provide resolution obtained from independent measurements of y, and
beyond the natural linewidth. These considerations Yb
are based on the fact3 that, in the transient regime, We note that transient line-narrowing spectros-
the probability for induced transitions in a two- copy has a number of similarities with detection
level system interacting with a monochromatic schemes developed earlier to achieve resolution
electromagnetic field is not weighted by a Lorentzi- beyond the natural linewidth in M~issbauer "

an of width Yab -Ya +Yb, but rather b,,, -Ya -Y,. level-crossing,.' -1 and Lamb-shift " - expen-
[ya and Yb are the decay rates of the two levels, merits. The common feature of these experiments
Note that in this paper, we call y. and Yb the am- is to discard the part of the radiation emitted
plitude (rather than population) decay rates. Thus shortly after the preparation of the system and to
y. and yb are twice as large as in the usual nola- collect only the delayed and exponentially weak-
tion.] As a specific example to demonstrate such ened signal.
transient line narrowing, we have proposed an ex- In this paper we present a fully quantun-
perimental setup. inspired from delayed detection mechanical treatment of time-delayed spectroscopy.
level-crossing spectroscopy, that utilizes a time de- both for weak and strong incident fields. In the
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discussion of Ref. 2 the atoms were assui.ed ito be tenr consists of anatomn 1 oth tl o unstable lesk a
driven by a weak classical field, so that a perturba- and b and a weak cw field drisine the atom tion
tive treatment can be used. In general, the strong- the lower lesel h to tile upper ltel a If one In-
field dynamics is substantially different from the eludes the low.er iceles to v hich a anid 1, deca. this
weak-field one. Since the time-delayed spectrum nia. he considered a-, a four-lesel atom -see Ii! I
depends sensitively on the temporal behavior of the We prepare the atom in -ctel b and. as the field
system, one might expect that the inclusion of dnN ." the atom to ieei a, we count tile photon,
power broadening would lead to a different time- emitted following the a -c transition, sltartiii a
delayed spectrum. In fact. as is shown in the finite time 0 after the atom is prepared. I lic
second part of this paper, it call lead to the appear- counting rate is measured as a function o the ie-
anCe of a transient dip Z:t line , cr. This din at .untg bet ,seen the laser frequen,'. k , .11id !i tl-
line center may prove to be a useful technique to ergy separation Ab between a and h,
determine accurately the position of the transition. Under the rotating-wase approximation .ind in
Thus. time-delayed fluorescence measurements the interaction picture, the sase function nan. he
have the capability of providing high spectral reso- written as
lution, not only through the line-narrowing effect.
but possibly iia strong-field "transient dip spec-
troscopy". fd.,",, ,.. k

The goals of the present paper is threefold.
First. we show that the results previously obtained f d d..\ k .A
semiclassicallv are recovered exactly in a fully
quantum-rnechanical treatment. Second, we extend with
the previous "weak-field" calculations to arbitrary
strength driving fields. Third. we give an intuitive L,(O() - b..k) .2

physical picture of transient line narrowing and Here . is the number of photon, i the dri inc

transient dip spectroscopy, based on a well-known field. a.L\ - 1k) denotes the state in shieh the
feature of the Rabi problem. atom is in the state a and . i phoons of ode

The remainder of this paper is organized in the k, are present in the radiation field and sml.rls

following way: In Sec. II, wre give a flly for other eigenstate'. and k, is the wase sector of
quantum-mechanical theory of transient line nar- the driving field. k I and k, denote the modes ol
rowing. considering an atom weakly driven by el- the photons emitted foilowmg the a -" and b -d
ther cw or pulsed excitation. In the case of pulsed transitions, respectively. In writing Eq. (2.1) we
excitation, square pulses. as well as exponentially have assumed that the energy separations betLen
decreasing pulses, are considered. We show that any two levels are sufficiently different from one
this leads to exactly the same results as the semi- another that the photons Co, k 1, and are disti-classical heor3',"' ,pkovidandpontaaresdimisin-
classical theory, .4 provided spontaneous emission guishable. We also have assumed that spontaneous
directly between the two states under consideration emission from a to b can be neglected. Substitut-
is neglected, and the emitted photons from the two ing Eq. (2.1) into the Schrfdinger equation. we im-
states are distinguishable. In Sec. III the effect of
power broadening on the time-delayed spectrum is
studied. It is shown that the inclusion of power 0
broadening leads to the appearance of a transient
dip. Finally, Sec. IV is a summary and discussion. X.
Throughout the paper, natural units h=c = I are n
used, unless otherwise stated.

b C

I. QUANTUM-MECHANICAL THEORY OF
TRANSIENT LINE NARROWING:

WEAK-FIELD LIMIT

A. Four-level atom driven by weak cw radiation

We first consider the system previously investi- d
gated by Meystre. Scully, and Walther.- This svs- FIG. I. Four-level atom driven by cw radiation.
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mediately obtain the tollowing equatior, for the %here ,ia or t) and ; t or d for the presen .case

probability amplitudes !!, dellote' s the intcrac.tion ilanitltoiiiian in the in-
Ie'raction piciture

i -t-i t l .tIn ordet to lta," il uiai n hietitiLtiO%, defilnilhoi t

the Ilnic dcla ed po ,t'r s t 'rl .in c nieeds I.o

f "f pdu 'PI't "ce a nitodcl detector iti, ihc problem tit
this pll 'F. ' weConsider thle san.i shelle ais I1 Rel

.'. I C 'A C (e CLt I ' tI I h C ItI 1 InFhe roiji pholt 't to i, Y 11.

l. i es usls ctiu ited toillo-Aing the tralrslmio a ", as

htt,( I i o'.1 * *s " p , o]j I tLii i ihc dctuniing A i 'becn the dris .nw

(i f" fteld and the tioit." encrkg separation

-.A k -1 1 ,h We tihen detie (ti [t l lItne-
f d L, " A cpl .A ' ,. i dcla,,cd sptctrutni .\ A0 as

2 3 Axltl 2'.. J, di, ,zl , :

idt L14 M exp( I A, A k'],I" , 2 C i.e.. as the number of photocounts from time 0 otn

i luts can be reexpressed :I, thc number of emitted

dA~ Af 2 3& photon% at = minu- Jm s t t =0.

t N-. .(22A).= f dk , :

subject to the initial condition. l:q dk2 or

at(O)' I . 2 4.t - ,

a"i (0) =("- (0) -t(0)t 0 t2.4h' Thus. the time-delayed photocounts can be oh-

tamed b% .oing Eqs. 12.3) and substituting the

A,, is the energy separation between the states I solutions Into Eqs. (2.6a) or 12.bb, [Details of the

and j. k, is the energy of a photon. ie., - k calculation are show n ti Appendix A for the

and Mk- is the atomic-transition amplitude defined seak-field liniiti Here wse ortl %how the reult

as

(jk, ll i.O)=M,exp[-iA, - A it]. 2.5'

2N M1k a exp( - 2ya0) expt - 2'01 2 expi - 1

S- ---- -- , i A sinAI-,'a, coA 0 ' ,

. .bab 2y.a 2'l. yw-

where ab -b, Yt, = Ya + yb, and ya and "b

are the decay rates of levels a and b. respectivei.
We note that in the limit 0--0, Eq. (2.7) yields

the usual Lorentzian of width Yab- However. if 0
is sufficiently large, only the first or the second
term in the large parentheses of Eq. (2.7) remains.
depending upon which of 'a and Tb is largest.
Thus. the dependence of N(A,O) on A is determined
mainly by the Lorenizian prefactor. and the line- .

width approaches the difference 8a0. This is the FIG. 2. Normaliued photocount, .NV A.f01 as a func-

transient line-narrowing effect. In fact. Eq. (2.7) is tion of A for %arious values of the delay (=0. 0.67.

identical with the expression obtained earlier- using 1.33. and 2.0 for the cases ,, - 3 and 1. = ) i in

the density-matrix equations and a classical units of , . If the system under consideration is the

description of the field. Here, Eq. (2.7) is obtaitned one shown in Fig. I. A is the energy detuning between
uscrtiong f tum- mie. eanical ap. oc. oTed the driving field and the atomic-energy separation. If
using . fully quantum-mechanical approach. The the system is that shosn in Fig. 4. A is the energy de-
,,,finalized power spectrum N(A.0) is shown in tuning between the central frequency of the drising pulse

Fig. 2 for Y, = 3 and 7Tb I, and in Fig. 3 for and the atomic-energy separation, and r, is the decay

Ya= 1.01 and ytb . constant of the exponentially decreasing pulse.
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The pulsed radiation can then be represented by

//ti \ .V ) - .- tB v 'vacuum 12.91" . t .", , 
-%V

. " ... where N is the number of photons in the pulse.
/ ',For simplicity, we take N I and consistently lim-
S / \ ' "', 

\  -- it ourselves to the weak-field limit.
I- ... As before, we write the wave function as

-4 d < .> ......... V,(t) = a'(t) I a.0)-t- f d a b..m b, k'

FIG. 3. Same as Fig. 2 except that 0 -0.1,2,4 and f d .fd-T 1a I CkO .2.10

'--l.0.

with
B. Three-level atom driven by weak-pulsed radiation f

Knight and Coleman4 have pointed out that Substituting Eq. t2.10) into the Schr6dinger equa-
transient line narrowing can also be realized in a tion, we obtain
system of two-level atoms driven by a weak ex-
ponenitaily decreasing pulse. In fact, the subnatur- . d f dk e ) b
al linewidth observed in Missbauer experiments ' -- d a ktxPfi G -daiJ

insolse.s basically the same system. For conveni-
ence we introduce, in addition to the two levels a- f d C1i :-, exp[i(Aoc -k A Iljac- W
and h, a third level c to which the upper level a (2.12a,
can decay see Fig. 4). Comparison of Figs. I and . d =,
4 shows the strong analogy between this system (t

and that discussed previously. The only difference d
is that the exponentially decreasing pumping rate i ,t =M exp[ - P -k I iaa( . (2.2c
arises now from the exponential decay of the pulse
amplitude in Fig. 4 whereas it came from the ex- where, as before, we hase assumed that Aab and
ponential decay of level b in Fig. 1. A., are sufficiently different from each other so

We describe the radiation via its spectral ampli- that the photons k and k are distinguishable.
tude (bl k . For an exponentially decaying pulse, Equations (2.12) are subject to the initial condition.
this would be a Lorentzian. However, we keep Eq. (2.11), or
6(k) arbitrary, so that our result is valid for any (10) k ). eta(o) = a't- (0) = 0 (2.131
pulse shape. Let us introduce the operator Bt k -

The number of photons emitted following the

B'= f dk )(ak , (2.81 a -- c transition from the time t =0 on is given by

where a is the usual photon creation operator. N l.0)--2),a t (it a(t, 2

fd, aif= -fd , rctp = )

a(2.141

V This can be obtained by solving Eqs. (2.12) and

-. substituting the solution into Eq. (2.14). Details of
L.i -~the calculation are shown in Appendix B, neglect-

ing spontaneous decay from a to 1 (a is the decay
rate of the a -.c transition.. N'A.0 1, of course.

PULSE __depends on the pulse shape because the solutions of
Eqs. (2.12) are different for a different choice of
( k).

b For the case of an exponentially decaying pulse.

FIG. 4. Three-level atom driven by radiation pulse. NIA.0 is again given by Eq. 12.7). Therefore.
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Figs. 2 and 3 also give the normalized count is the decay constant of the pulse rather than of
.V(A,M) for the system considered here. We note, the atomic level.
however, that k, is now to be interpreted as the For the case of a square pulse of duration t,. %e
central frequency of the pulse, A =k,,- Aab, and )'b obtain

2; g+ ya - exp( - 2 1a 1,0-2 expt - 2yn)

2 exp( - Yj
to 1( Ma cosAto - A sinAt - 2 exp( - ly' 0 y, cosAO - AsinA(O)

NV(A,O)=

g', 'xp(-2y.O)for 1) 1
Ig expt-2y1 - 2}

A y }, [ exp 2yt )-2exp ,ato1 cosAt] for 0 - t,

¢2.1 ,

g, is a constant depending on the pulse parameters, k, is again the central frequency of the pulse. and
A = k,) - Aab. The normalized count N (A,O( is shown in Fig. 5 for t, = I and ya = 3. and in Fig. b for tI 1
and ya = 1.01..V(A.0) takes the same form for all 0s exceeding ,. This is because, for 0-> t,,, the situation
is analogous to making time-delayed measurement on a two-level system with the levels a and c. We see
that the line narrowing does occur with a square pulse although the narrowing is not as dramatic as that as-
sociated with an exponentially decreasing pulse.

C. Physical interpretation of transient line narrowing nance. This means that the remaining population
after some delay time H is relatively a large number

Since transient line narrowing arises from the when excited on resonance, thus leading to the line
behavior of the system in the transient regime. it is narrowing. In this section we show quantitativel
natural to study the temporal behavior of the sys- that the above interpretation is indeed true.
tem in order to better understand and interpret the Although our discussion here is limited to the case
effect. Intuitively, it is not difficult to understand of an atom driven by pulsed radiation, it can equal-
the line-narrowing effect. It is based on the well- ly be applied to the system considered in Sec. 11 A
known (but perhaps anti-intuitive) fact that the provided that the appropriate redefinition of k,.
Rabi frequency is larger for larger detunings, and yt, etc.. is made.
that therefore the excitation and the depletion of The integrand ifl ' in Eq. (2.14) for the pho-
the population of the upper level (level a in our tocount is the probability for the atom to be in the
system) are slower when excited exactly on reso- upper state a at time i. For the case of an ex-

ponentially decreasing pulse. we find using Eq.
(B4) of Appendix B,

FIG. 5. Normalized photocounts .VIa.0) as a func- "
tion of" energy detuning fotr varous values of the delay . .v
0 0. 0.5. and 0-, I fo~r the case y., = 3. The driving °
field is assumed to -e the form of a square pulse of'
duration 1, 1. 0 is in unit-, of t, FIG. t. Same as Fig. 5 exept that y. 1.01

I) >). .5.andO-~ fo th cae ~ 3. he ns~g I
fiel isassmedto h inthefor of sqarepule olE,.., ,,.,,i

duraionI I I) s i unls f t, F~.,.t. ame s Fg. esert hat~, .0
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04.2

tat,

FIG. 7. Probability P'(A.) as a function of time t for FIG. 8. Same as Fig. 7 except that , = 1.01.
two values of energy detuning % -0 and 2 for the cases

3 and )'b I (exponentially decreasing pulse). The
time is Ii. i.Jfits of y

flects the above-mentioned fact that the Rabi fre-
quency is larger for larger detunm:, , d is ihc ey

pa(A,t) aa(t)1,
-  point in understanding the line-narrowing effect.

According to Eq. (2.14), N(A,0) is the area under the
1g, [ 2 probability curve between r =0 and a. We see

- A 2+6b [ exp( 2yatI+ exp(- 2 y, ) from Fig. 7 that, as 0 is increased, this area de-
creases faster for larger A. This is even more clear

-2exp( -yabt)cosAl . (2.16) in Fig. 8. The integral ofp(A.,t) between, for ex-
ample, t 2 and o is only a small fraction of the

p'(A,t) is plotted in Fig. 7 as a function of time area between t =0 and ac for the case A=2. while
for two different values of detuning A =0 and 2 for it is still a large fraction for the case A =0. Thus,
the case y. = 3 and )'b = i. and in Fig. 8 for the larger A, the faster the system emits spontane- 4,

y. = 1.01 and Yb = I. p4(A.t) initially increases as ously and leaves a smaller number of photons to be
the driving field pumps the atom to level a, goes emitted after some delay time 0. This directly
through a peak and eventually decreases to zero be- leads to the narrowing of the linewidth.
cause of spontaneous emission. The peak occurs For a square pulse of duration tt,, the probability
earlier and has a smaller value for A = 2. This re- takes the form

g',(l+exp(-2yat)-2exp(-Iat)cosAt]. for t1o (2.17a)p 0 (A+ }';pa( Ajt) ii-+Il

gs l 2 exp( -2I'a t )

a+(Ih 1 - - [ exp(2,,,t) -t I - 2exp('at )cosAto], for I - rt (2.17bh

where Eqs. (B8) of Appendix B have been used. This probability is plotted in Fig. 9 as a function of time
for two different values of detuning for the case t,, I. ya - 1.01. Here again we see that the peak occurs
earlier and has a smaller value for larger detunings, although the effect is not as strong as before. This ex-
plains a relatively weak li- narrowing with a square pulse.

Ilt. STRONG-SIGNAL REGIME: TRANSIENT DIP SPECTROSCOPY

Up to now, we have restricted ourselves to the weak-field limit, in which the -', o, , iitirbative treat-
ment is justificd. We now relax this restriction and study time-delayed spectroscop: i the strong-signal re-
gime.
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The analysis departs from that of the weak-field limit in that instead of using Eq. (A5) of Appendix A, we
now solve Eqs. (A2) and (A3) exactly for aaU) and abt). These equations yield a second-order differential
equation for a'(r) [and also for ab(t)], with the solution3

i"t) -'N'~t~ exp(u,t) fodtj exp[(u1 -u,)tj] (3.1)

where

Ut = I -yab-iA+[(8,b +iA) -4N M, ,1121/2 (3.2a)

u , = - y ah -i -(b + i & ) -- 4 N I M V - 1/2 1/ 2 • (3 .2 b )

Using Eqs. (3.1) and (2.3c) we get
t ftcrt t )(-i)VNIfMr, fo dt, exp[u2-ia -k, ]tlf dt, exp(u I- u )t, (3.3)

The number of photons emitted during the time interval (0,o ) following the a-c transition is again given
by Eq. (2.6a) or (2.6b). After tedious but straightforward algebra, we obtain

N(A,0)= [4raN I Mr" I 2 exp( -- ybO)]/p

Yab cosh[ OV'p cos(/2)] + V'p cos(d6/2) sinh[ Ov'p cos(b/2)]

Yab -P cos2(/ 2 )

7'b cos[OVpsin(6/2)] +Vp sin(b/2) sin[Ov'ipsin(d6/2)3

y~b +p sin2(6/2 ) '(4

where

- M ' I 12+46 bAJi/2 (3.5)

and 4i is determined by

cos6 =(8, -A 2 -4N IMoI 2)/p , (3.6a)

sin=28abA/p . (3.6b)

Equation (3.4) is the main result of this section. The time-delayed count N(A,0) is, in general, a complicat-
ed function of the system parameters, and we first consider some limiting cases.

I

A. Weak-field limit cos6 -_(8a2b - A )/p (3.7b)

In the weak-field limit N-O, we obtain sin 2habA/P. (3.7c)

t a, (3.7a) Equation )3.4) reduces then to Eq. (2.7) of Sec.
II A, as it should.

0o17-

B. No time delay

" /, 'In the limit 0 -0 (no time delay), Eq. (3.4) be-

- comes

d YbA ±-,, N NI Md N. -.. (A ,) = 0) . . . .. . .
o- ' ',, - }~~'b(-%2 

+- )L; +,N' . e, }a/}ad,

FIG. 9. Probability P as a function of time t for two (3.8)

values of energy detuning A O and 2 for the case t, -- I which is the well-known power-broadened
isquare pulsel and y. -: I.t1. t is in units Of t1 Lorentzian line shape.
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C. General case C or -- ..----- - . /"

We now return to the general formula Eq. (3.4).

In Figs. 10 and 11. N(A,O) is plotted as a function

of the detuning A( -ko -ab) for different delay

times 0 and for different field intensities for the - " -

case ya = 3 and yb = 1. We immediately see a new

feature of the power-broadened spectrum, namely, . -.

the appearance of a dip at line center for large 0 -... , ...

and for high enough field intensities. A close in-

vestigation indicates that, for a fixed value of the and G I 1.5.

field intensity, and as 0 is increased from zero, the

linewidth first decreases (transient line narrowing).

However, as 0 is further increased, the line This ratio determines whether the arguments of the

broadens back until the linewidth becomes roughly hyperbolic functions are larger or smaller than

the same as that at 0=0. If 0 is further increased those of the sinusoidal functions in Eq. t3.4), and

beyond this point, a narrow dip appears at line therefore determines the characteristic behavior of

center, and becomes deeper and wider as 0 is fur- N(A,(). For the case of Fig. 13, r is very large

ther increased. Since it always appears at line (r = 10
4 ) and the contribution from the ,iiisoidal

center, it may help locate the center of a transition terms is important. As a result N(A,0) exhibits a

with improved accuracy over standard methods. strong oscillatory behavior. On the other hand. r

The dip appears with a smaller delay for stronger is relatively small (r < I ) for the cases shown in

fields. Thus, one can operate without significant Figs. 10 and 11, and no strong oscillatory behavior

loss of signal. For example, for a Rabi frequency is exhibited there.

G( _N M 1 )=1.5, the dip appears already at In a sense the transient dip is an opposite
phenomenon to the line narrowing because, in or-

d=2. On the other hand, for G =0.6. the dip still der for the dip to appear. the remaining population

does not appear even for 0 as large as 4. In Fig. of the upper level a after the delay time 0 should

12 we show N(A,) at a fixed d as G is varied, be a relatively small number when excited on reso-

Here again, we see clearly that the dip appears nance. That is, the depletion of the population of

more easily for stronger fields. level a should be faster when excited on resonance.

In Fig. 13 we show the same N(A,0) versus A That this is indeed the case when 0 is sufficiently

curve for the cases ya = 1.01 and yb = 1, and G = I large can be seen in Fig. 14, where the probability

for various 0. We immediately notice the strong p"(At)= I a0 (t); 2 for the atoms to be in level a is

oscillatory behavior exhibited in this case. plotted as a function of time for two different
A useful parameter to determine the behavior of values of detuning for the cases y, = 3, yb = I, and

N(A.0) is the ratio of the Rabi frequency to 6ab or G =0.6. As we have already noted in the previous

r=G2 /bb (3.9) section. the peak occurs earlier and has a smaller

S.0 -- - - . --- ----- . /
', , , - , '

: -\I t \k . 6 6 ,. / ,, ~

: F~e,.'y det~m
o 
,

-1 1 5 '0

E-,y d, .. FIG. 12. Normalized photocounts . (A.0) as a func-

FIG. 10. Normalized photocounts N (A, as a func- tion of energy detuning A for %arous values ofthe field

tion of enerrn detuning A for various values of the delay intensity G =0.3, 0.6, 0.9, and 1.5 for the cases y' =3.

0=0,2.4,6,8,10 for the case y, =3, )'b = I, and the Rabi Yb= I, and for a fixed delay time 0=4. 0 is in units of

frequency G =N I M V0o -0.6. 0 is in units of Yb.
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S...._ -linewidth or the appearance of a dip at line center.
/t/ ,The linewidth is limited in the small-signal regime

I by the difference in the transition rates involved.
... This provides an optical technique that yields high

spectral resolution.
_.. A dip may appear at line center as a result of

6 the transient behavior of a system subject to power
broadening. Unlike the line-narrowing effect, the

Energy deunn, A width of the dip is not limited by (Y' -Yb), and/or
FIG. 13. Normalized photocounts N(A,) as a func- the delay 0. It can be as small as one likes if the

tion of energy detuning A for various values of the delay intensity of the driving field is close to the thresh-
0=0.2,6 for the cases y, = 1.01. yb= I, and G = I. e is old for its appearance. This dip suggests a means
in units of ),b. of enhancing resolution involving homogeneously

broadened systems while the Lamb dip is available
to study inhomogeneously broadened systems.

value for A =2. This of course accounts for the The narrowing of the linewidth or the appear-
narrowing of the linewidth for small values of the ance of the dip is achieved at the expense of some
delay time 0. However. when 0 is sufficiently loss of the signal. A recent analysis5 indicates that,
large, the A=2 curve tina)W, catches up with the despite the signal loss, time-resolved line narrowing
A =0 curve. This behavior can be understood if we is highly desirable in a large number of cases. If
note that for a I-,rge detuning the atom is ineffi- one tries to locate line center in the absence of

ciently pumped ' : level a and therefore still a large spectral complications, i.e., if we know we have
number of atorv, .re avai'Abk to be pumped at a only one line in the region of interest, then it may
large time. This rieans a slower depletion of level be best to let the delay time 0-0 and collect the
a at sufficiently .. te ,iine when excited off reso- maximum number of counts, since the determina-
nance and w'd, airc..tly to the appearance of a dip tion of the line center improves as the square root

at line center. of the intensity of the signal. However, if there are

complicating circumstances, such as overlapping

IV. SUMMARY AND DISCUSSION lines, etc., it may be better to use finite delay times
with the attendant line narrowing and/or dip.

Under appropriate conditions, time-delayed ob- We finally note that the results obtained here via

servation of the radiation emitted during an atomic a fully quantum-mechanical theory take exactly the

transition can lead to the narrowing of the same form as those previously derived semiclassi-
cally. The origin of this exact agreement lies in
the neglect of spontaneous decay from level I a ) to

0,04
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07_ -_ APPENDIX A: DERIVATION OF EQ. (2.7).
THE CASE OF cw RADIATION

___ _ _ In order to derive Eq. (2.7), we first solve Eqs.

• . , (2.3). From Eq. (2.3c) we have

FIG. 14. Probability P' as a function of time r for c" (1)= - d, t exp[ -HA,,- k )t I ](a(ft i
two values of en rgy detuning A - O and 2. for the case k

y 3, yb= , and G =0.6. t is in units of yD,. For (Al)
t - 4, InP' is plotted as a function of time t and the cor-
responding scale is shown on the right side of the graph. Substituting Eq. (Al) into Eq. (2.3a). we obtain
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d Y b is given by the same expression except that it is
,-iv NM exp(_ -iAt)ab(t) . evaluated at k =Abd instead ofkdi 1 In the weak-field limit (N small, or Rabi fr-

(A2) quency G <- Ya, ib)- the right side of Eq. (A3)
may be neglected. This means that the major

Similarly, from Eqs. (2.3d) and (2.3b), we obtain source of depleting level b is not the driving field

A+ y but spontaneous decay to level d. We then have
dt +Yb ( -iVNM exp(iAt)a(t) .ab(t) exp( -Ybt) . (A5)

(A3) Substituting Eq. (AS) into (A2) we then obtain

The decay rates )'a and Yb in Eqs. (A2) and (A3) a(t)
are defined as =--V NM 1.-expt -2,2 ) f dt, exp[I -6,,b-iA)tl]

Ya k, -n, 1 2(4 (Ab),
7'a (k'rfdfl~iM-2 1 k-A , (A4) and therefore, using Eq. (Al),

a ()' _)V Mt Mr

a " (, =(-)VN M .k l fo dt, expf-y, -ilAo, -kl )]tl fo d t2 exp[(-8,ab--iA)t' l . (AT7)

1
Substituting Eq. (A6) into (2.6a), or Eq. (A7) into From Eq. (B3b) we then have
(2.6b), we immediately obtain Eq. (2.7) for the t
time-delayed photocounts. a(t)= -i exp(-Yat) J dt exp('a1, )g0t

(B41

APPENDIX B: DERIVATION OF EQS. (2.7) AND (2.15). and from Eq. (132) we have
THE CASE OF PULSED RADIATION )

k,(f)=(-i)2M- f dt exp[ -y -i( A,,. -K t

In order to derive Eqs. (2.7) and (2.15) for the
case of pulsed radiation, we first solve Eqs. (2.12). Xf,, ) .expy , (, .
From Eqs. (2.12b) and (2.12c), we have

(135)

a9k0= 6(k)-i dt1 exp[ -i(Aab -k)t ]aa(t , The time-delayed photocounts N(A,O) can be ob-
tained by substituting Eq. (B4) or (135) into Eq.

(B 1) (2.14). N )A,O) depends on the pulse shape through

a- (t, -iM- f, idt, exp[i Aac -k 4 )tca(t, ) the function g(lt).I (1 i For an exponentially decreasing pulse. the pulse-
(B2) shape function g(t) takes the form

Substituting Eqs. (BI) and (B2) into Eq. (2.12a). we g(t)=g exp[(-'b-iA)t] , (136)
obtain where q, is a constant, A=ko -Aab, k, is the cen-

d!t ,tral frequency of the pulse. and "h is the decay
-t +),a +})a oa(t) constant of the pulse. Substituting Eq. tB61 into

Eq. (B4, or (B5), and using Eq. (2.14). we obtain
= -i f dM '-exp[i(aab-k)t]6k(). Eq. (2.7) for the time-delayed count N A,0).

(B3a) For a square pulse of duration t,. we have

= -ig(it) , (B3b) g( )= Ig'expt-iAt)' o0t'tI11

where y. and y' are the spontaneous decay rates 0

from level a to c and b, respectively, and Eq. (133b) . ', i, a constant, A, is again the central fire-
defines the pulse-shape function g (I). )" 17 From quet-, of the pulse, and A=kc-Ab. Substituting
here on we assume that y. is negligibly small. Eq. (137) into Eqs. (134) and (B5). we obtain
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-ig exp - ) f<,xp[( '3-iA8a O <_t 0 a

-ig 5 expt - Vat) f dt exp[( 4a i 1 )t], t (t8

and, for t t o .

-- f 1tt exp - -[ k, t , f dt, cxp -i .i. )r.,

Substituting Eq. ( 8) or (B9) into Eq. (2.14), we obtain Eqs. (2.15) for the time-delayed photocounts.

iFor a recent review see, for instance. Laser Spectroscopy Lett. I1, 189 (1973).
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PRDIATIVE ENERGY TRANSFER IN A RANDOMLY FLUCTUATING MEDIUM*
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The basic lawrs of the phenomenological theory o1 radiative energy transfer are derived, under certain conditions, wk ith-
in the trames ork ot the stoctiastic scalar wave theory. An equation oi radiative energ, transier is derived tor \%ave propaga-
tion in a statistically quasihomogeneous medium. Our results relate the extinction and scattering coefficients (which are
introduced heuristically in the conventional theory of radiative energy transfer) to the stochastic characteristics ot the
medium.

i. Introduction and the last term represents the effect of sources. The

functions a(R,s), (R.s,s ) and D(Rs) are the so-
The subject of radiative energy transfer through called extinction coefficient, the differential scatter-

stellar atmospheres and through turbulent media is ing coefficient and the source function respectively.
generally treated on the basis of a phenomenological In the usual heuristic model, the specific intensity
theory [1,21. In recent years, many attempts have I(R,s) is treated as a radiometric quantity and the
been made towards providing a satisfactory basis for equation of radiative energy transfer is derived by an
the conventional theory and to deliminate its range intuitive quasi-geometrical argument involving balance
of validity [3-14]. These attempts have met so far of radiant energy, without elucidating the microscopic
with a limited success, meaning of the extinction and scattering coefficients

S. The central quantity of the phenomenological and of the source function.
theory is the so-called specific intensity of radiation In this paper we investigate the foundations of the
I(R.s) which satisfies the radiative energy transfer theory of radiative energy transfer and derive an equa-
equation of the form tion of radiative energy transfer in a randomly fluc-

tuating medium on the basis of scalar wave theorN.
s. 7Rl(R,s) = -- (R,s)I(R,s) Our results elucidate the relationship between the

+f(R, s, s)I(Rs')dQ, + D(Rs). (1.1) extinction and scattering coefficients and the stochas-
tic characteristic of the medium.

In this equation the left-hand side represents the rate
of change of the specific intensity along the s-direc. 2. Relationship between the specific intensity and
tion. The first term on the right represents "extinc. the coherence function of the wavefield

tion'" due to absorption and scattering, the second
term represents a contribution due to scattering front We consider a random scalar wavefield iri. The
all directions (the integration extending over the con- second-order-coherence function of the wavetield
plete 47r-solid angle generated by the unit vector s') is given by

Research supported by Air Force Office of Scientific Re- 2

search (A-OSRI. In eq. (2.2), the sharp brackets denote the ensemble
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average. The coherence function F(r1 r, ), when ex- tive transfer for the "space density" of radiation
pressed in terms of the new variables I IR) and for the net flux F(R), at R. in terms of the
R=r 1 +r.,): r~r I -r, (2.2) specific t, >:of radiation I(R.s. viz.

will be denoted by l(R,r): i.e., U(R) =- (I(R.s)d . (2.11"
r(R. r) - '(rI , r, ).(2.3

The ensemble average of the energy density U(R) F(R)= fs(R.s)d!2. (2.12)
and the ensemble average of the energy flux F(R) are
related to the coherence function of the wavefield A comparison of eq. (2.11) with eq. (2.6) suggests
by the following equations [71: that the specific intensity of radiation I(R.st can be
U(R = ( 'c)I'(RO), F(R) = (1 i .related to the angular component of the energy _en-

sit' Q(Rs) by the ,imple equation

(2.4).(2.5 )
where c denotes the speed of light in vacuo and k0  l(R,s) = cQ(R,s). (2.13)

is the wavenumber in free space. In view of eq. (2.9). we can write
Not long ago, Wolf [121 formulated a rigorous

theory of radiative transfer in free electromagnetic ,
field. In his theory, two quantities are introduced (Rs) = f f(R, K) K dK. (2.14)

which relate to energy transport: the so-called "an- 0
gular components" of the average electromagnetic The expression (2.8) for the spectral density f(R.
energy density and of the average Poynting vector. K). combined with eq. (2.14). gives a relationship be-
In analogy with these quantities, we introduce the tween the specific intensity of radiation and the co-
angular component of the average energy density herence function of the wavefield which seems to
Q(R,s) and the angular component of the average have been considered first by Ovchinnikov and
energy flux T(R,s) by the following relations: Tatarskii [151. Recently, on the basis of this defiti-

tion, rigorous equations have been derived by the

U(R) =f(R,s)d~2, F(R) =T(R.s)d 2. present author for radiative transfer of energy and
(2.6),(2.7) momentum in free space in the presence of random

source distribution 114).
The integrations in eqs. (2.6) and (2.7) extend It is clear from eqs. (2.7) and (2.10) that, with
over the whole 4ir-solid angle generated by the unit this definition of the specific intensity, the usual flux
vectors. If we define the spectral densityf(R.K) of relation (2.7) is. in general, not obeyed. The condi-
the function F(R,r) with respect to the variable r tion under which the radiometric and field theoretic
by the formula definitions of energy flux coincide, is given by

f(R,K)=(27r)-3fl'(R,rexp(-iKr)d3K, (2.8) j T(R.s)dSZ =fsI(Rs)dQ. (.15)

then, in view of eqs. (2.4)-(2.7). we obtain On substituting from eqs. (2.10) and (2.14) for T and
1, eq. (2.15) becomes

Q(R,s)=' f f(R,K)K 2 dK, (2.9)
r s (k k,).OR. K)1IA. = 0. 16

s f(R,K) K 3 dK. (2.10) whre, as before, s represents the tnit vector along K.
kn 0dConsider a solution of eq. (2.16) of the form

Equations (2.6) and (2.7) are analogous to the 0fRK) = I(R.s) 0(K k . (2.1 ')

pressions of the phenomenological theory of radia- On taking the Fourier inverse of eq. (2.8) and sub-
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stituting for r'(R, K) fron eq. (2.17 ). it follows that 3. Wave propagation in a weak randomly fluctuating
medium

R'R, r) =.1( R, s) exp Gik~s-r) di.. 21

The propagation of the space-dependen t p,- : r)
This representation of coherence function has been of tile scalar wave in a medium ssith random fi,,c:a-
adopted by many authors in their investigations on tions of the dielectric constant is governed o. the
the foundation of the theory of radiative energy trans- stochastic scalar wave equation
fer. , 2

In a recent paper, Collett, Foley and Wolf 116] + kocr iir = 0, (31)
have shown that if. for propagation in free space, the where k0 = w c is the wave number of the field Ln
coherence function FVR,r) admits the representation free space and cir) is the dielectric constant. If the
eq. (2.18) then the wavefield v(r) is necessarily statis- fluctuating dielectric constant exhdibits only small
tically homogeneous. Furthermore one can establish departures from its mean value, which for simplicit%.
the following theorem: Theorem 2.1: The coherence is assumed to be unity, then a representation in terms
function F(R,r) of the wavefield in a statistically of a parameter p may be adopted
homogeneous medium is independent of R. (i.e.. is + c + ) (3.2)
a function of the difference variable r only) in the
special case when the incident field, which satisfies where
the free space wave equation, is statistically hono- , k.32
geneous, at least, in the sense of second-order co- 0 1 1 -  3
herence theory, with 11 denoting the smallest correlation distance of

It is also apparent from eqs. (2.8) and j.2.14) that, the dielectric constant fluctuation E, (r). Since we as-
when the coherence function of the wavefield lF(R,r) sumed (4(r)) = 1, we have (e1 (r)) = 0. Moreover the
is a function of the difference variable r only, the random function el (r) is assumed to be a gaussian
specific intensity I(R ,s) is independent of position, random variable.
i.e., On substituting from eq. (3.2) in eq. (3.1 ) we ob-

I(Rs) - (s). (2.19) tain

In that case the free space radiative energy transfer (72 + k0)v(r) = -kge 1(r.r'r). 34)
equation If we recall the defimition (eq. (2.1 )) of the second-
S.77 order coherence function of the wavefield 5'tr ,r,s R I(R, s) = 0 (2.20) it follows from eq. (3.4) that 1(r ,r2 ) satisties the

is trivially satisfied, equation
Using these results. it may be shown that the rep- ( - 2 ( ,r2 ) -k-2 ;[k(r I:'r )i.*(r, (\

resentations eq. (2.17) or eq. (2.18) cannot be adopt- - - 0-11
ed to derive an equation of radiative transfer with
non-vanishing extinction and scattering coefficients - ( (r2 )$l ) r"(r2 hi " (3.5

/ in statistically homogeneous media. Let us assume that the field variable or) can be
In this paper we consider wave propagation in a expressed in a perturbation expansion I IS]

statistically inhomogencous medium and show that v(r) = v0(r) +,uv (r) + (u2  33.6
the representation of eq. (2.17) for the spectral den- I
sityjf(R,K) may be used when certain assumptions Upon inserting from eq. (3.6) into eq. (3.4) and
are made concerning the incident field and the ran- equating to zero the coefficients of the zeroth and
domly fluctuating medium, of the first powers of p. we obtain

(72+ ko) V(r) =, (3.

* We assume max. t (P) - 1. in that case u repre'e .he

strength of the dielectric constant fluctuations.
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(,72

+ k )vI(r) = --ko0leI(r)r (3.8) 4. Derivation of the equation of radiative energy
transfer

The solution of eq. (3.8) can be expressed as

,f ) P 3p, We will first make certain assumptions concerning
=-k iGO(r (3.9)~~l~d(r) = -k ,, Go'r ''p)(3.9) the incident wavefield uv(r) and the dielectric con-

stant fluctuation cl(r) which simplify eq. (3.141 con-
where siderably. We then proceed to derive the equation of

I exp (ikolr -Pl) radiative transfer satisfied by the specific intensity.
47r r -p(3.10 Let us assume that the incident field is statistical-

ly homogeneous, at least in the sense of the second-
is the (outgoing) free space Green's function of the order correlation theory. The coherence function
Ilenhloltz equation with wave number A0 . '(r tedpnsolyn hdieeceviae

We now expand the terms on the right hand side F,(R~r) then depends only on the difference variable
r. i.e.,

of eq. (3.5) to the lowest non-vanishing order in j..e

Since (e1 (r)) = 0, it follows from that perturbation FJ(R,r) -1'l0(r). (4.1)

expansion (eq. (3.6)), (neglecting the terms of order Next we assume the random medium to be quasi-

1 3), that homogeneous, i.e., the coherence function B(Rr)

2 2 4 of the dielectric constant fluctuation is assumed to

1- ,2)F(r1 .r_) = k 0 [(r_ -P) 0
(p 'r,)  be a "slow" function of R and a "'fast" function of

- , rr. lfL denotes the distance over which B(R.r) re-

+ Grmains sensibly constant with respect to its first ar-

k4frAoO. )r~( .) gument, then, in view of the quasihomogeneity of
- Dthe medium,

+ GO(r, - p) To(rlp)] B1(p,r2) d 3p ,  (3.11) L > 11, (4.2a)

where 1I is, as before. the smallest correlation dis-
where tance of the fluctuations in the dielectric constant.

!(r,r,)=B((r +r,),r 1 - r2 ) 2 (l (r)lr2)) ,  Furthermore we assume L to be much larger than the
1 correlation distance 1, and the wavelength 2rrik -i

(3.12) the incident field, i.e.,
o(rr= r0( (r, +r2),r -r2)

L >- 1, -> 2 ., (4.2bc)

=(VO(r! ) u(r 2 )). (3.13) -

Th.aw a.iv..inptions are sat-.fied in many problems
We now change to the variables R and r which are of practical interest. A frequent model to describe
defined by eq. (2.2). In terms of the new variables. a radom ites. theqent mo sre

eq. 3.1) cn b shon atersom rearanemets, a random mediumt e.g., the earth's atmosphere as-
eq. (3.11) can be shown after some rearrangements. sumes quasihomogeneity. In many cases of optical

to take the form propagation through atmosphere the conditions (eq.
2 7 R Vr F(Rr) (4.2a)) and (eq. (4.2c)) are easily satisfied. The as-

sumptions (eq. (4.1)) and (eq. (4.2b)) are obeyed by

0kof[G00))(R + - p~p)I'0(R -2 fields of thermal origin e.g.. the blackbody radiation

-G*(p)B(R - 1 r - lp,p) I'(R - pr+ p)] d 3 p which is both statistically homogeneous and isotropic
2and whose correlation extends over distances of the

- k 4 f ([GOp)B(R - p,r - p) F0 (R - 1p,r - p) order of the wavelength associated with the frequen-
cy of the radiation at which the energy transfer is

- G*(p)B(R - tp,r + p) F0 (R - lp,r + p)] d 3 p. being considered.
In view of the assumptions (eq. (4.1)) and (eq.

(3.14) (4.2)), we can simplify the various terms on the right
hand side of eq. (3.14). Since the incident field is
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considered statistically homogeneous, tile first term '(R, r -p) then. in view of eq. (3.6 . an error of the
can be written as order p4 is introduced which is neglected in the pres-

ent lowest non-vanishing order perturbatiNe anal. sis
J(1,(p)B(R + r 1p.p) 1,(R - p,r -p)dp [17]. Thus, to the second order in p.

=f(G, pB(R +, - lpp)'(r -p)d 3 p. (4.3) 2R 7, RR. =of [,k(p) rR.r -pi

In view of our assumption (eq. (4.2b), B(R.r) is con- Go(p) 14R.r + p)] BI(R.p I d p
sidered a "slow'" function of R and I',I(r) is consider-
ed a "fast" function of r. Under these circumstances. - [k4R.r

we can replace BI(R + r - p ,p) by B(R,p) on the

right hand side ofeq. (4.3) without introducing an - Go(p)B(R.r +p) l'(R.r +p)] d3p. (4.9)
appreciable error. We then obtain

Next we take tile Fourier ilnerse of eq. )2.S) to
f(;( (p) lMR + r - p,pW',,(R - P.r p)d3p express '(R.r) in terms of the spectral density f(R.~K). ice..

2fG1 .p) BRp) F~1 (r - p) d3p. ( .) R Rr) =fJ (R, ) exp (iK .r) d3K. (4.10)

Siniflarly.
Moreover we define the spectral density +,R. K) of

fG0(P)B(R - - pP)U(R - 2Pr+p d3p the function B(R,r) by means of Fourier decomposi-
G p)IRp) I-(r +pd (4.5) tion with respect to r.

B(Rr) =fJlb(RK)exp(iK'r) d 3K. (4.111

The third and fourth terms on the right hand side of
eq. (3.14) can also be simplified by using eqs. (4.1) It can be shown that +,(R.K) is a real function. In-
and (4.2b), and one obtains serting eq. (4.10) in eq. (4.9) and using eq. (4.11).

we obtain after some rearrangementfG 0  a(R - pr -- p) Io(R - P,r -p)d 3 p-

K 7R f(R.K) = -I rrk' D - k0 s) d( t(R K)
"JG (-)B(R~r -p)' tr -p)d 3p, (4.6) +I 7k-5(K f10 ) (.- K').ttR.K')d3K'.

fG(p) (R - 1p.r+p)'F(R - p,r+p)d3p k.

f 0 2 1.(4.121

- G'(p) B(R, r + p) F (r + p) d3p. (4.7) This integro-differential equation for.t(R.K) canbe recast into the following integral equation

On substituting front eqs. (4.4)-(4.7) in eq. (3.14)
we obtain? e btinf(R, K) =.(,)(K) exp f- c d."(R -- x"s.K)1

_-7 -.rfv Rr = k)f Gop) 1'0(r -p) 0

G (p) F(r +p)] B(Rp)d 3p + 8(K - k0) f dx'B(R - xsK)
0 0

0 0 p exp f &x ".A(R - x"sK)[. (4.13)

- Go(p)IB(R,r +p) F0(r +p)I d3p. (4.8) 0
*2 The derivation of eq. (4.16) can be carried out on the

If, on the right-hand side, F0 (r + p) is replaced by same lines as in Ch. 2 (Sec. 6) of ref. 121.
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where and 3 are connected by the relation

f 1K) jljrexp( iK-r)d 3r. (4.14) cdR.s) =(AiR.s.s) )di2 . (4. 2 2)

T1his equation, %Wch is a consequence of the conser-
vation 01 energy, implies that the extinction of a

.l(RA)= 2K [)R.K k0 s) dsl (4.1!, wave propagating along the direction s is due to the

I scattering in all other directions.

2K 'RK URK).K. (.6 It is a pleasure to acknowledge the encouragement

and assistance of Prof~essor Eimil %%oit'during the
Since cie incident field is assuuted to be statisticallv Course of this work. The author is also grateful to
hiomogeneous, it can be shown that (ret. 1121 , appen- Professor M .0. Scully for his suoport.
dix B)

0W)=1,()((K-- k0 1Wk0 (4.17) References
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PHOTON STATISTICS OF A TWO-PHOTON LASER
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The stead% lte qua nturni statistical pro pert tesot a ts -phol ri Iawsr ire presen ted tor tile case Mi eni t he ca'io t Ios
niechanisin is swi liated h- a sine ke-photon proces.

1. Inoitio n. Tile success of the quan turnl theorv Of lasers itIVOiN11ne a single Photon emission pler atomilc
transition I h las generated a -,reat deal of interest in the possibility of achieving laser action itnvolving thle stnuj-
fated emission of two or more photons in a single atomic decay. The two-phioto1 laser has the prospect of achiev-
mg htight beam intensities since the strength of thle cou~pling between the laser-active atoms and the light field is
proportional to the light intensity in contrast to tile square root of the light intensity in the one-phocton laser.

Several authors (2-71 have studied the photon statistics of a two-photon laser ort thle basis of a tnodet sinilar
to the laser model of Scully and Lamib [ 11. The model consists of a coupled system of' a field atid identical twso-
level atoms. Thc lasing levels of the atoms are assumed to have the same parity tinder tile usual dipole approxitlu-
tion fo r thle two-ph ot on t ratnsit ion to take place. The a toni--field ite cract ion for the two-photon enuio 'i process
may be described by the effective hiamiltonian [8].

H, =g,(Ga, + a-,i2) ,( I)

where g , is the coupling constant given by

92 v1211:1 2 "12 -

p2 is tile nlal nx elemient for the two-phioton transit ion. and 1[] 2 has thle dimenion111 of field intensity. tlte .1lito
operators a anld a' are defined by

~0 l~0 0
0+ 

1 0 )

and 41 .- are the anntihilation and creation operators of' tile field. Thle cavity losses due to tile trJitStttissioII oll

laser I iglit thIt ri h le en d mi rr r are si mu late d by anoftier set of t two-level at ois \% Itcli are pu tope d in tile h nser
level at a conistant rate aiid which can mtake a transitiont to thle tippet level by\ absotbing laser photons.

InI mtost o tilie studies (On tle (Ilan 1 url statistical properties ofl tile optical field of a two-pIt . n hi Ser 12.5,61
it is assumed that thle end nirror ofl rthe cavity is transmitting at thle sumn frequenc\ 2w. ie.. thle Itto-levet atomts
witich siminulaite tile cavi ty losses a bsor b t wo phiotons to mnake a t ranisi tion from tile lower level to tile uppert level.
The restrict ioni to a t wi-plo toti loss ineclian isi is made in order to (ret a in I le properit Iil' deta ilIed balance.- This
model for tile cavity losses is unrealistic since tile photonts do ntio escape inl pails. oilttile hIisms of tisl model, it
is predicted thIiat, iii single- an d two-miode two-pit o n lasers, thle ptof ott dist ri bittion 'it ciiotis are nan owe r I that

Research supported ly tile \ir I oree Office o? Scmt-ntic Research*IAl OI
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in the single-photon laser.
It is of .considerable interest to investigate the quantum statistical properties of a twko-photon laser %%hen tie

cavity loss mechanism is simulated by a single-photon process. Some authors have approached thi1S prOA11 'Hm ;sne

perturbation methtods 13.,71. Ini this paper, we present an exact solution of the miastcr equation that descrilhes a

single-miode two-photon laser withi a simile-phioton loss mechanism. We als derive expressions for the nmean phi-
ton number and the relative tluctuations of' the number of photons liiv1 Lbove threshold.

. Photon distibution junction. We start with the equation of motion for the photon distnbution fulic I on
p~n) in a single-miode two-photon laser. The master equation can be obtained in a straightforward manner b% tAi-

lowing the same method as that of' the Scully -Lamib theory of a single-photon laser I 1. The result in! equatin is

+ +1~ I POO + A , ni it I 1 ( 1 - n2) +C(fn+i)'(ft+ iI - O(0Ip',. (2
at I + (B,, A + I )(it +) I +(B-.l,),i(n 1)

where, siilar to thieSculls - Lamb theory, A, and R, are inc gain and saturation palallieters lr the i%%o-phton
gain mechanism aiid C is the loss parameter which is related to the laser f~reqUncTI w and the Q ot the :javit% t,%
the foflowing equation:

C= w/Q. (3)

In eq. (2), the term proportional to p(nt -- 2) represents the two-photon emission procesr. whereas the terml pro-
portional to p(n + I) represents tire single-photon absorption process. It is therefore evident that the detailed
balance condition is not obeyed inl the presettt case. This makes it inure complicated to solve eq. (2) even inl the
steady state.

In an eaflier paper [()I on the effect of cooperative atomic interactions on photon statistics in a single-mode
laser, we encountered a master equation which also included two-photon emission and single-photon absorption
processes. We solved this equation in steady state using a matnix approach. fle same approach can be applied to
the present problem.

In the steady state Iap~n)!at = 01, we obtain fromt eq. (2),

anP(?I) + b n - 2POn 2) + (' + I O + 1) 0 4

whe re

an Q1(--ln hn 0I +1 )(n +2(C)
I+(B -,) (Pt +lI-+ 2) I+ (B, 1 it)( + I )(nt + 2) - ~ .t 0 abc

It is clear from eqs. (5a-c) that

an~ + bn +Cen = 0. (0)

In matrix notation. eq. (4) can be rewritten as

0 a, c2  PO

0.
'I (7)

It can be shown, by the method of induction, that tlte soluiokn oft eq. (7) is given h% the t-0lh'miui. eqluatl i''
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I )"p(0)

s, hetr e

a0  (

0 a u
1,) 0

,Mittn) Li Ie

i ) e 01( 11, i I deter iInIed I roiI the it or nialization conditio n =, p = I. By using the properties of tie de-
terin+ait and Mlation to). tie deterl minant .11(ti can be shouw, t) he expressible in tle tollowmne Iorl:

I+ /,+ ,, I

h

b C,hi~ I I -
./t det'

1 tP r, -

O nI Nubsitittiing t rom eq. 10) til eq. (8). % " obtain pin as the loiliOiAi i j i Oti CI of Co ti LC +act1,i)S. 0

Pt +1

,' I ' + r - h, th r 2

+ 2 ,!' I )

TIhis exprte'sion ltr pin I tletlier Iith tire expressioin ol b,, and 1 1et. 0ls I'bc )L O iAnrplLtel\ dtli0lnl1 fhe

phIoi l statl " N, k .I 5o-pll.tloil Iaser

q.P / /,! Hit it '# til, r r/ it a tI la l<Pt( /In O f /,, ,i I lthrc',t s ,1, [ i t'W e 1, IA I I, C In, IIC Or It It" I I~II Ii IN, IIbtlll M t Ui,I It~ II I II II

two-pholt)n laser. Ashren ltie laser operates tirrir h oe lhreshrold. a reL iite lit which the plolln distribution tun-

flon ot a sillit-phrloltill la i .described h\ I illoll n distriblilton. [or, a Poisso i i tlfitr lre th l ttictiitinn in

tie nitmber ot pitti is is unit ,, i.e..

it I.1 2

Fri a two-piotolil laser. Ilperalln high aboie titesholid, 'e \ a. e ui i I , Ii, - I nder till condition eq. I 2
,:can be simplified corisiderabis by l,.gecit!i I in tire denoa tl.ol tile first arid wcoiid teris l fire leli Ihand
side. We then oirt'in

drl)( l d , ip flB + I..1 II Hi,,, t + I )11n + I ) p i) . (13)

This equation can easily be suolvt., in sIady %late, using the following generation function:
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g(x) =  xpp(n). (14)
nt= 0

The generating function g(x) obeys the following equation:

dg/dx - (.,/B2CI(I + x)g = 0. (1

This equation can be integrated and the icsulting equation is
g(x } = e xp [(A 

2

g~) ep 2A/2B-,C)(x 2 + 2.x - 3)1] (16)

It is evident from eq. 114) that

(n) , 12>
= d29(7a b

d, x = ~ Gx x I 7a, b-

It follows, on substituting from eq. (16) in eqs. (17a,b) that

(n)= ~2/BC, (An)Z/(n) . (lgab)

According to eq. (18b), the photon distribution function for a two-photon laser is wider than the Poisson distri-
bution. This result is in agreement with that of Golubev [71 that the relative fluctuations of the number )f pho-
tons in a two-plhoton laser cannot be smaller than in coherent emission.

It is a pleasure to thank Professor M.O. Scully for his support.
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A density matrix method is used to obtain an exact solution for the reduced density matrix of the
field in an arbitrary multimode m-photon absorption process. The results of some earlier

specialized studies of photon statistics in multiphoton absorption process can be recovered from

this solution.

It is well known that nonlinear interaction of light with atoms N in the lower level are assumed to be maintained

matter changes the quantum statistical properties of the constant by some external influence. We assume that the

light field.' The changes of the photon statistics depend on atoms make a transition from the lower level to the upper

the interaction process and on the initial conditions of the level by absorbing m photons; x, photons in mode i (it = 1.2,

field. ..., /; im) We then obtain

In this paper we consider a multimode m-photon ab-
sorption process. The multiphoton absorption processes x, = M. (I)

have recieved a great deal of attention in recent years due to
the possibility of producing a radiation field which shows The single-mode situation corresponds to the case when one
photon antibunching. The photon statistics of two-photon of the x's such as x, is equal torn and all the rest are zero.
absorption process was studied using a generating function The reduced density matrixf, of the field can then be shown
approach and exact expressions for the photon distribution to satisfy the following equation of motion using the stan-

function were given in single-mode2-5 and two-mode' pro- dard perturbation techniquL.

cesses. The off-diagonal elements of the density matrix ofthe d65, " ) )-, 2( 5

field in the single- and two-mode two-photon absorption dt ,-,''

processes were given by Simaan and Loudon." Paul, Mohr,
and Brunner" studied the photon statistics of rn-photon ab- )< + i, (1(2)
sorption process on the basis of an approximate procedure.

Recently, an exact analytic solution of the master equation wherei "" is the absorption coefficient for m-photon absorp-

describing single-mode rn-photon absorption has been ob- tion. and 6. ., are the photon creation and destruction oper-

tained by Zubairy and Yeh.'. using a density matrix ap- ators of the ith mode. respectively. In Eq. (2) the saturation of

proach and by Voigt. Bandilla. and Ritze'' using a Laplace the absorbing atoms is neglected.

transform method. We denote the state in which there are n photons in the

In the present paper we extend these results to arbitrarv ith mode(i = 1. 2,..., 1by In,, n,...n ). The equation of

mulfimode absorption process. We begin by considering the motion 121 forb, can be translated into an equation for the

master equation which describes a multimode m-photon matrix element

process. We present theexact solution ofthereduceddensity pin,. n,; + K ..... n, + K1.

matrix of the field using the matrix approach. ' Due to the
general nature of our problem the results ofthe earlier stud- (n.n 1,51 n, ± K.n, + K,), 3)

ies can be recovered in the appropriate limits, of the reduced density matrix by evaluating the matrix ele-

We consider a coupled system of a field and Nnoninter- ment of each term in Eq. (2) between the appropriate Fock

acting two-level atoms in their ground state. The number of states. The resulting equation is

p. n,+K;r) =a(n,, ... , n,; n, + K,. n, + K)p(n,.. n,; n, + K, .... n, + Ki,; 7)

+b(n, +x , ... n +x,;n +x, + K .... n, -x, +K,)

xp(n, + x, ..... n, + x, + K; r), (4)

where r = 20"'t and

a(n, n I,; .... n;)-= - { + ,("-j) (5a)- 12[ j(n,- X)! I- (n; - x,)

"'Research supported by the Air Force Office of Scientific Research. and

the U. S. Army Research Office.
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b .n,..... .. = n, - X )!(n: - x,)! Sb

Following the method employed in Ref. 10, we first express Eq. (4) in the matrix notation

d-p. (I = M, ,p (). (1.

where

pli, + X1 . if + X,; il + K, + x,,..., i, + K , + x ,; rl
p, .. . Ir 7

pi, + nX ...... i., + nx,; i, + K, + nx. i + K, + nx,,; r)

I) 
0i mn" n, I I

and fl ," "'is the qth element of the left eigenstate of A
In Eq. 18), the elements m,, are given by the following corresponding to the eigenvalue A,, . The matrix ele-
expressions mentsa',,' "andf8 l" can be shown to oht. ! hC tolowmng

recursion relations

m, = a(i, +jx .... i +jx,; "

il+ K,- -jx,.. it +KI +jx), 19 a) m , +m,, ,,a .. =., ,a' ,', 12a,

m,,,, =b ji, +(j+ l)X i, + Ij+ lx,; mq ,,J3," ,"+M,,i . .. m., " . .1

i, + K, + (j + Ix.,.... if + K, + (i + Ix,1, 19b) By solvinF Eq. (11) and by iterating the recursion relations

forj = 0. 1. 2..... (12a) and (12b). we obtain

The solution of Eq. (6) or Eq. 14) can be expressed in the A . = M,,. ( 3
form
pti, + nx,..i, + ax.,; i, + K, + PIx, ... , I., + K, + flx,:rl

S j. a ," ' ', 'e' ' p(i+ qx, .... t +qx,; a " . ft- rn - m , .. . ,A14)

Xi, + K, qx .... it + K, + qx,; 0), (10

where A,., ,, are the eigenvalues of the matrix M,.. . i.e. . . (15)

they satisfy the equation. 1; q<s.

det[M ..... -AI]=O, Ill ifweletn=O,i, =n,.andK =n n 1,2 ./ln- I

(Ibeingtheunitmatnx), a,'' "is the nth element ofthe right (10), then. on substituting from Eqs. (9a). (9b). and 13)-
eigenstate of M, .,, corresponding to the eigenvalueA. , (15). it follows

p(n,..n,; n;,...n;; r)

iI, ,b(n,+rx,....,n +rx,;n; +rx,....n;, rx,)

,= 1l 1 (n,+sx n .n1+sx,;n; +nx. n;+sx,)-a(n,+rx , rx,; +rx .....P 4 ,

X .e .;.)p(n, + qx, .... nt + qx,;n, + qxj.n; + qx,. 0). (16)

This equation, combined with theexpressions fora'sandb's We now show how some of the earlier specialized re-
[cf. Eqs. (5a) and (Sb)), completely determines the time evo- suits regarding multiphoton absorption processes can he ob-
lution of the density matrix. The photon distribution func- tained from Eq. (16).
tion p(n ..... n,; r) = (n . .... n, o n, .... n,) can be deter- in the case of single-mode m-photon absorption pro-
mined from Eq. (16) by putting n; = n, (j = I ... ,I ). cess, one of the x,'s (say x ) is equal to m and all the rest are

2691 J. Math. Phys, Vol 2 1. No 1I, November 190 M S Zubawy 2691



zero. We then obtain, from Eqs. (Sa) and (5b), that n)= n !n; (17h)
M n; h! J ,

a(n,; n)= _ n 1 (17a)

12 (n I - m) Y (n, - m)1 If follows from Eq. (16) that

p(n ; nl; 7)

_ ll I b (n, + mr; n, + mr) e ..... p(n + mq; n + mq; 0). (18)
0 Iq All [a(n, + ms, n; + ms) - a(n, + mr; n + mr)]

After making some rearrangements, this equation can be shown to be identical to Eq. (31) in Ref. 10 (see also Ref. I I for the
case n, = n ). We have discussed some aspects of photon statistics in single-mode m-photon abosorption process. such as
photon antibunching, in that paper.

As another example, we consider m-mode m-photon absorption process. In this case, = m and x, = I(i = 1, 2 ... m).
The expressions for a and b in Eqs. (5a) and (5b) then become

a(n . n,,,; n.... n,,,)= -k[n .... n,, +n. n,,] (19a)

b(n ....... n n n. ') = (nI .... n,,n .... n', ) " . (19b)

Moreover, from Eq. (16). we obtain the following solution for the density matrix

p(n ... n,,,; n ... n,; r)

Y _ 119 ,b(n, , .... + - n , +r,. n , )

. Ia(n,+s ..... n m +s; n, +s ... n" +s)-a(n,+r ... , n,. + r; n; +r,. n + r

Xe . .. "p(n , +q.n, q; n', +q .... n. +q; 0). (20)

Simaan and Loudon" have discussed the case m = 2 in ACKNOWLEDGMENT
some detail. Equation (20) together with Eqs. (19a) and The author is extremely grateful to Professor M. 0.
(19b), after some rearrangement. can be shown to reduce to Scully for his support.
their results. For a discussion of the quantum statistical
properties of the double-beam two-photon absorption pro- '& S. SAgaral. Phy,. Rev A 1. 1445 (1970)
cess, we refer the reader to Ref. 6. 'K. J McNeil and D F Wall. J. Phys. A 7.617 (1974)

'N. Tornau and A Bach. Opt. Commun. 11.46 119741

'H D. Simaan and R. Loudon. J. Phv. A 8. 539 11975)
In conclusion, we have obtained an exact solution of the 'IL D Simaan and R. Loudon. J. Phys. A 8. 1140 (1,75)

master equation that describes an arbitrary multimode mul- H D Simaan and R. Loudon. J. Phys. A 11. 435 (1978)

tiphoton process. We have shown via two examples how the 'H D Simaan. Opt. Commun. 31, 21 (1974).
'H. Paul. U. Mohr. and W. Brunner. Opt. Commun. 17, 145 (1971

results of the earlier specialized studies 1an be recovered 'M S Zuhatr. and J J. Yeh. Phv. Rev A 21. 1624 (19 )04
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Intensity correlations in a two-mode laser with coupled transitions
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M. S. Zubairy
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(Received I I December 19801

Intensity correlations in a two-mode laser oscillating on two coupled transitions have been studied by means of the
Fokker-Planck equation. It as shown that they can be expressed in terms of the eigenvalues and eigenfunctions of a
one-dimensional Schrodinger-type equation. It is found that near threshold intensity correlations cannot be
approximated by a single exponential. For moderately large excitations, however, a single exponential dominates.

Approximate analytic expressions for large excitations have been obtained which show that the correlation time
increases with increasing excitation.

I. INTRODUCTION tion function was derived under the conditions

of perfect resonance between the atomic transition

and the corresponding mode frequencies. This

Recently a quantum-mechanical treatment of equation was solved in the steady state and the

laser oscillations on two coupled atomic transitions fluctuation properties of the optical field were

has been given.' In that treatment a set of homo- discussed. One of the principal conclusions was

geneously broadened three-level atoms interacting that the intensity fluctuations do not, in general,

with a two-mode electromagnetic field in a uni- die away with increasing excitation. Small asym-

directional-ring configuration was considered. nietries in gain may change the statistical proper-

The atomic-level configuration that was con- ties of the two modes significantly. These effects

sidered is usually referred to as the "A" con- are, of course, the result of mode competition.

figuration in the literature on three-level atomic The question that presents itself now is how does

media.
2 It was assumed that each transition sup- the mode competition affect the correlations and

ported a distinct mode of the electromagnetic other time-dependent phenomena. This paper

field. A master equation for the photon distribu- answers this question partly.

II. TIME-DEPENDENT FOKKER-PLANCK EQUATION

The starting point of our discussion is the master equation for the photon distribution function p(n 1 ,n 2)

derived in Ref. 1, viz.,

d ~,n) - A(n, + 1) A*1 2)_h n)-"P(nt, , n2)
dp 1 + (B/A)(n, + n a r 2) 1 + (B/A)(n1 + n 2)

+C,(n, +1)p(n, +l,n,)+C2(n2 +l)P(ni,n2 +l)

1 + (B/( n5 +n2 + 1) p(n, -1, n) + 1 + 1A)n 2j + 1 +
+I+(Bi +2+l)P~hl'n2)+l(BiA)O(n +l~n'2

- Clnp(n )- Ca(n,n). (1)

Here p(n1,,n2 ) =p(nt1r2 ;njtn2;t) is the diagonal element of the density matrix operator of the optical field;

nn 2 are the occupation numbers of the two modes and A, B, and C, are the gain, saturation, and the loss

coefficients, respectively.i This equation will now be converted into an equation for the quasiprobability
distribution tunctton +1, for the complex field amplitudes by using the coherent-state representation tof the

density matrix of the electromagnetic field.' The Fock-state elements of the density matrix operator are

related to 4' by

p P1,; n, ;t" 0 il .. 2 2, i 0 1 2 ,,0,d 120 , (21
23( I n ! n,! n;yl o

23 25017 0 1981 The American Phiysical society
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where 0, is the complex field amplitude associated for ?C or p. However, if we take recurse to the
with the ith mode in the coherent state of the scaling argument a closed equation for P can be
field. In what follows, our interest will be con- obtained. This argument works as follows: since
fined mainly to the intensity correlations so that B/A is typically -10' so that to a very good ap-
we will not be concerned with the dependence of proximation the derivative terms (B 'A) 1 (. i'1)

+b on the phases 0, and 0, Such dependence would can be ignored compared to (B, A)Ii in Eq. (5b)
be neededfor a discussion of the amplitude corre- which then is easily solved to give
lations but the problem in that case turns out to be (
rather complex. Now, the relevant intensity dis- w =I +(B/A)(I, +1, )  (6)
tribution function P(I,1,t) that is needed to cal-
culate intensity correlations can be projected out On substituting Eq. (6) into Eq. (5a) we obtain the
of 4 simply by noting that it is determined solely following closed equation for P(l, 2 t):
by the diagonal Fock-state matrix elements of the dP I a a
density operator. The two are related by -- =A -4 +-Ll - -i l1-

p(nlnz ;nl112;t) -P(n1,n2,t) n , t

1*1 A a aM11 121 l t)e 1't-2 dltdl, .

(3) 1Clat 811.

We also introduce an auxiliary function by Note that Eq. (7) has the formal structure of a
-I Fokker- Planck equation and is the desired equa-

[1 +B (nt *n +2 Pn, n2) tion that will form the basis of the discussion in
.4 the rest of the paper. We emphasize that the ap-

S(it' - d ( proximation made to reach at Eq. (7) is not the
f 1,1 2 1 n,! n(! weak-signal-limit approximation and does not

restrict the validity of the above approach to the
Using Eq. (4) we obtain the following set of coupled region near threshold.
differential equations: The effects of mode competition are more inter-

a 1 A a 2 a 1 esting when both the modes have equal losses. We

al t 1 ) 2  aI a-1  shall therefore consider this case first and put

C 1I = C 2 = C in Eq. (7). The general problem with

_-1 2 -L - ' ,,t) unequal losses is still quite complicated. We shall
consider this problem later. With equal losses

a a \ ( 
\  for the modes we now look for the general solution

+Cil 1+C2-4,jP(li~ 4 vt) P(1,4,t) of the form(5a
(5) ~ lI tLmZC Lt* Lm=(1, 1)ei)Lmi , (8)

and L,,

1 B 1whereC., are the coefficients to be determined
-A- 1- - I

1
-

2 2'
w l t l ) P (l '

12
' t ) "  by the boundary conditions and X is the eigen-

value of the differential operator on the right-hand
side of Eq. (7) associated with the eigenfunction

These equations can be solved exactly in the steady fL.. The differential operator depends on two
state and the corresponding solution was discussed variables I, and 1, therefore the eigenvalues and
in Ref. 1. The general time-dependent problem the eigenfunctions are labeled by two integers

for p('t, l4, 1) is very complicated because it does L, in. The eigenvalue equation is obtained from
not seem feasible to obtain a closed equation either Eqs. (7) and (8) to be

_A tII+__ 2 1 _ a L . + 8 (11 i +\~+*J 12 f. 2)al3 fL .fL JM (9)

91Ii~j2 24 'AlL

In order to solve Eq. (9) we first try a substitution of the form

where U(lt,l4) is some function of 11 and 1 which will be chosen to yield a self-adjoint equation for g,. and
N is a normalization constant. It is easy to show liat the choice
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(A -) .1 BC4A

yields the following seLf-adjoint equation for iLm

I ~ ~ -- .4 ( I, + I) l - t (1 -+ "j ) _31C +

Notice that the steady-state solution corresponds The two-time joint probaoilil;" density
to L= 0o, = pi ,=0 and is found from Eq. (9) after p 2 (1,1 2, ';Ill ,1 1') for the intensities at two differ-
straightforward integration to be ent times can be obtained easily now. Noting that

the stationary-state probabilities are independent
p(1 1,1) =Q-1 (+-(1 + 1.)) of the origin of time we obtain

(BC p 1,, ,, t + T; I,, I, t) ' G (l1 ,, I 7'1 , ;, 1" O)p1,,U I,')Xexp(AA +1)-) (, +1l') - - (l, (13

If we choose X = , the relation IEq. (10)) can be .(

rewritten for later convenience in the form
For discussing second-order intensity correla-

S'2.,(li~ = [1 + (B AS(I t i,)I'
2
gL(lxl..). (14) tions, we need the two-time joint probability densi-

The functions 1 L. may be chosen to be an ortho- ty, which we have been able to express in terms

normal set. In addition we assume that they form of certain eigenvalues and eigenfunctions. For

a complete set. The two conditions can be ex- discussing higher-order intensity correlations,

pressed in terms of the eigenfunctions 
t
r,, as higher-order probabilities will be required, which

also can be expressed in terms of the same set of
f ' '

2
dl dl2 = 5L (15) eigenfunctions and eigenvalues. Our problem now

- py1 .l ') is to solve for the eigenvalues and the eigenfunc-
and tions.

T ( l.(' -
= 6( I , - I")(I 2 -

I
,

) 
. (16) 1i1. SOLUTIONS OF TIE EIGENVALUE PROBLEM

To calculate two-time correlations we shall The eigenvalue equation (12) can be written in

need the Green's function G(1,, 12,t fl,Qto) which a simpler form in terms of two new variables de-

is also the conditional probability for the intensi- fined by

ties to be characterized by the values 1, and 12 at u11 -'2 2 - 0 (19a)
time t given their values 11. 1 at t o .  To this end -(1-' -1 1 (19b)
we note that G( 1,, 2 , t o ) is the solution ( + 

2 ) 
'

P(Il, 1,) of the Fokker-Planck equation (7) with
the initial condition P(I1 , 'Vto) 5(1 t - )(- ). or
It follows immediately that I (

We also have

1,),, ~) ('L • ted.(0
I p,(tl, d) (20)

(17) Then CL" obeys the following equation:
I

C a a 
2  

BC(. - C C 1' 3 RC,( - + 1 ('21)

- Ju- -A- "* " \ J.ul 2 4A 2.-1'i , -,- A/

The form of Eq. (21) suggests a solution of the d . l--', BC(.I -C. ) 3-

.. \ -t # -. J
form L~ 4A4 2.-1'2

(22 + (/I r)~ =' It (22 + L.
Substitution of this into Eq. (21) yields the oilow-

ing two uncoupled equations for RL.(tl) and S,(,'): (23a) h.
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and The equation satisfied by is

d (1 - r2 lS,,3S =0 (23b 2B c 6BI
dr ( 112' L I - .A' -(- B'

where L is the separation constant. With the

choice,3,=(L 4)(L+2)= I(l+1), 1=0,1,2, Eq. (23b) +4- 4(1
is just the Legendre equation and S, can be ex-
pressed in terms of P,, the Legendre polynomial L(L 2) * (
of order 1 as + (2C

S (i) --2+ 1  (). (241 This equation is sililar to the equation encountered
\ 2 in the solution of single-mode and two-mode ri:ng

The eigenvalue equation (23) can be reduced to an laser problems- except for the r-dependent factor
even simpler form by making a change of variable multiplying the eigenvalue. Unfortunately Eq.

(26) cannot be s ,'.'-d ainalvticallv and numerical
71=Y 2

, du= 'dr, methods have to be used. Finally, in terms (,f the
2 (25) new functions the two-time joint probability has the

R,('.) = r - ,/( () form

(I~~~~ I ' ,1
p2 (1, 2 t±Ti/, 1,1)= p,(,)p 4 (,,')J''2 ]Rt,(,,{ l+.i,, (. )1R2,12+')

Higher-order joint probabilities can be expressed similarly. With the knowledge of the two-time joint

probability function, we are now in a position to discuss the intensity correlations.

IV. INTENSITY CORRELATIONS

We shall consider only the second-order or the two-time intensity correlations. Higher-order correla-

tions can be discussed similarly with the knowledge of the higher-order joint probabilities. From the
definition and by symmetry, the two autocorrelation functions are equal, i.e.,

(/, ()J, + T)) = J(t)I2(t + T))

Sffffi~ py 1 2 , t + r11,~,d 12~ (28a)

The intensity cross-correlation function is defined by

(l () (t + T) = "1(I- 1 + T))

=ffff fz2 p2 (lIt+Tl1,,I,1)d~d 2dI (28b)

We can evaluate them all together by writing

(l(t)lr.(t + T)) = IJ.p 2 (11 ,1It + TiltI ,t)dad2dltdf , jj' = 1,2 . (291

With the help of Eq. (27) and Eqs. (18) and (19) we obtain

(i,(t)Ir(t + T)) , dI du ORoo Il +- B ) R

(2 (+L.1)
1

'
2 e-'LMT f I d,, 1 - )zj 1 i dl-(1'p(z ,j'=12 (30)

From the orthogonality property of the Legendre n- ... _,. we have

(31
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Using Eqs. (25) and (31) in Eq. (30) we obtain the following expression for the intensity correlations:

j)(t )l (t + Tl) z , -~ r')T -dr co 1 r o

+-f- " dr, 1,j(1 r '-), , 1,i' =1,2. (321

The r integrals have to be evaluated numerically, clearly reflected in Figs. 1 and 2. These conclu-

The intensity correlations, thus, can be expressed sions are similar to those reached by Tehrani
as a series of failing exponentials with coefficients and Mandel and Hioc for a two-mode laser. This
which can be evaluated in terms of the eigenfunc- similarity again points out to the fact that they

tions of Eq. (27). The behavior of the normalized both correspond to a ,ystem of two neutrally

intensity correlation functions coupled modes as noted in Ref. 1. In view of these
remarks we expect that the general time-dependent

!(T (( (t + P) problem when the losses of the two modes are not
- 1, jj' =1,2 (33) equal can be discussed using a perturbative ap-

proach for small differences in the losses along
the lines of lRef. 5 and similar conclusions may

is illustrated in Figs. 1 and 2. Numerical calcula- be rech e . We shal lno cond rt is p o l

tions show that near threshold many terms in the

series of exponentials contribute and a single ex- any further, however.

ponential approximation is rather poor. However.

for large excitations they are well approximated
by a single exponential. In fact,

V. SUMMARY

(______ 
2BC2 

7ti,,(T) - exp A(A- C) (34) We have considered and solved the problem of

two-mode laser oscillations on coupled transitions

is a good approximation for .-I 1.01C. It follows in a A configuration of a three-level atomic sys-

from Eq. (34) that with increasing excitation in- tern. Two-time intensity correlations have been

tensity correlation time may increase which is studied and the expressions for them as a series

'.C 1.0

0 5 10 o0 5 0

T 'Natural units) T Naturol Units)

FIG. 1. Normalized autocorrelation function oll(t) as
a function of T for three operating points (A - C0/A FIG. 2. Normalized cross-correlation function U,2 (tt
=0.0. 0.007, 0.1. The parameters for this figure are as a function of T for three operating points. For para-
A=ps' , A/B=10 and C was varied. meters see Fig. 1.



2512 S.URENDRA SINGHE AND M. S. ZLUBAIRY 23

of decreasing exponentials have been derived. It ACKNOWLEDGMENTS
is found that the correlation time increases with
increasing excitation and that for even moderately The authors are grateful to Professor L. Mandel
high excitations all second-order intensity correla- and Professor M. 0. Scully for their support.
tions are well approximated by a single exponen- This research was supported by the Air Force
tial. Office of Scientific Research (AFOSR).

'Surendra Singh and M. S. Zubairy, Phys. Rev. A 21, 12, 1553 (1975).
281 (1980). -

3
RJ. Glauber, Phys. Rev. 131, A2766 (1963); E. C. G.

"A. Javan, Phys. Rev. 107, 1579 (1957); H. R. Schloss- Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
berg and A. Javan, zbid. 150, 267 (1966); M. S. Feld 

4
H. Risken, Z. Phys. 191, 186"(1965); H. Risken and

and A. Javan, ibid. 177, 40 (1969); Th. Hainsch and H. D. Vollmer, ibid. 201, 323 (1967); R. D. Hemp-
P. Toschek, Z. Phys. 346, 213 (1970); B. J. Feldman stead and Al. Lax, Phys. Rev. 161, 350 (1967).
and M. S. Feld, Phys. Rev. A 5, 899 (1972); 1. M. Bet- 5M. M. Tehrani and L. Mandel. Pys. Rev. A 17, 677
evov and V. P. Chebotaev, in Progress in Quantum (1978); F. T. Ilioc, Surendra Singh, and L. Mandel,
Electronics, edited by J. H. Sanders and S. Stenholm ibid. 19, 2036 (1979); F. T. Hioe, J. Math. Phs. 19,
(Pergamon, Oxford, 1973), Vol. 3, Pt. 1; F. Najma- 1307 (1978).

badi, M. Sargent, III, and F. A. Hopf, Phys. Rev. A



\lui, h- V \ mc 4 I'f~M'll 1 I If s 4 19n ' S2

NONCLASSICAL EFFECTS IN A TWVO-PHOTON LASER

M.S. /L'BAIRN
Ititureit or .~iht~ Op tei c'rnit' h'w n oiitcs InivriIVO \iV.n

A /iqct'.A 11 15 -1." I S!A
,mim tax-nam A,,-I, nntitt Iiir Quani~tpok,
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1 11 't,-d% tat,: q t um~L~t 'fTlitICjI ptop ri ,JC 1 101 1i11t ii %%,-moidc tmo~-1 tfitoo ij'cr iCe t~rc ,cnted. It I, jitmn tliat

In inait s% stemis ins olvinietthe interaction between beamns. we obtain I I' a non1 neeative two-mode

liJil jild a inlediutti. thle qoaionl statistical proper- G;lauber's coherent state rcpreSenT11tton1 P(11 .

ties of* lilit are predicted to e\liibjt Some1 non1classical
eltfects I 11 1lie mlost well-ktnowni example of' these 2fj v';2i - It 1 :I , 1,
effects is phototn antibtichitig which wkas predicted
Ultd thten observed inl resoniaice fluorescence [2.31lxpl 1,)~lL )dl 24 d 2 .d~,
antd theoret icallv predicted inl a mult iphoton absorp- -~ ~I~ 1 .V u d

tion process 14.5 1secotid-liarionic eteration jl . This leaids to thle fo01W lloin q1ant~linl anll~OLUC 011 The
degener"ate pataietric anriplitication 17 1. and t'ree- CauICltys itiequalit\ Il
elect ron laser I [I. etc. Wec definle the degree of'sec- 2') 2. icl

ond -order colheren ce of WI( i hibe V'flt

'a;aaThe violatioti of' this itieqtalit \wuild he e~ctdin

w;i aI(a I ) s). st enits %% he cre I T e corre la tion lietIv cet I tie ts\% o leamils
is larger thiatn tire co r reIatiotn beteett thre pltototis of

\k i ere a,. anid a, are tire crea tit i and destruct iotn ope r- t ile same be atn. TlIis non classi cal co'rrelation bet eell
10"or ile field ill the mode i aid tile anlar tire liclit heatts has been observed inl isO-11litonl CJs-

brackets detiote the etiselible average. I[lie pliot on cade e ilissiotil I
amitibtinehitne ts; exhibited by tire ttelds witteht satist\ Inl this paper w~e uive another e\amnItle Mihete thle
thle inequality violationt ot thle 1.1att ) could he ttbse!\ed.

We coniside r a two-ni ode two-phIo tott laser inl
2) witich lasing actioti is ac'iieved h\ stimlulated enls-

i.e. tire decree of* second-order ciih eren ce is less thtan sio ottf twit til photon'ts inl a sin ele a liiitic de cas . [ilte
11nitW. 1hIts is trie iof' the field distibhutions inl %\10cl l.sr nmodel contsists itt a coupled N\ stemn ot fricH mid

phoitotis are :,iticirrclated. ideintical twi-lesel atoms . I lie lasiiie levels of tile
Itt tite ciise of' initensity mteasuretmettts itiile wTwo attilis are as-sutimed to' have the smnle parli untder Thle

usual dipitle appii. aton f*or the tsso-pitoin tratn-

-. . - iRescr,cf tupl'~oried fi\tir 1 1 S. .\ir I o'r-, oi~c sittt'T to itike plaice.
Sctentific Rewa~refi i At 051(1. [le qwmitut statistical prioperties ot thle o'ptical
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field of a tm o-phottin laser have been studied in de- single-photon absorption in node I and sltr.le-rhotii

tails il recent years 1 10 171. These include studies absoipltori it mode 2 <psleciel% .

on Sil lC-nl10de and to-mode lsers. Manv authors We catn11 howveT det c mine ihe sectond-order ciorre-

restrict themselves to the model of' a two-photon laser lation functions in stead\ state % lien the laser is oper-

in Mhich the end mirrors are assuled to be transnlit- atine li,,Ilh above threshold. Itn this ieinie i nB , I

tin at the stim frequency 10.13,14.171. The restric- I. %k lien this condition iN, satisfied. %%e call ne,'lect

tion to a two-photon loss mechanism is made in order utit\ in con parison wkith tire terins proportlional to

to retain the property of detailed balance. In this pa- B/..I in the denonminators ot the first two terms oil the

per we consider a more realistic model or a two-node rhs of eq. (h)i. We then obtain (in stead\ state :

tw o-p iot lon laser iii wh ich the cavity loss neclia niistn s - 4 . 2 ,'Bh fn, I ' ; I

of Ole two modes are simulated b\ I tie single photon

processes.
Ve consider two field modes in a resonant cavity

interacting with a systei ot identical two-level atoms. + ',Oi,' + Ilp/f( i ."' + I) CIn2'1),(1l.11 , =0 .
The atom -field interaction nray be described b\ the
effective hiamiltoniatn in the interaction picture Variots mn iemts ot ot and iiG e . Kn to. - 0.

I can be obtained by multiplying eq. ( S) b\s

W 'amid summine over it ,and It,. It can be easily

where g is tile coupling constant and the atom opera- shown that (for i 1. 2)

tors o+ and o- are defined by (n) A 2 BC(

+ = .1 0 . (5) 2
0 0 1 0 (11, (1il- + t/ ,10)

The master equation for the photon distribution func-

tion p(1 t. it2) can be obtained by a straightforward (t 112) = (n l [ 1 + ((rt) + (12)) I] .l1)

extension of the Scully-Lamb theory [181 of a single On recalling the definitions of G [eq. ( Ill we ob-

photon laser. The resulting equation is tai
dP(nn 1 ) -Alnt + I)pt, + I) (;12 =G(= 2 G = I + [(,t + (,tt 12)

dt I -+ (BIA (it--+ Il)(n2 + I p n l  2  "
-•+...... : 2 +IIt is evident that the Cauchy's inequality 3 1) violat-

An t'l2 ed in tile present case. this nonclassical et kct is how-
+ + (B/A i-It - '(nt -- I.112 - 1) ever very small, of the order ol{mtl) + vmt! i

It is a pleasure to thank Prot'ssor M.O. Scull\ for
+ CI (tII + 1 )p;l + 1,112) - CI~ tl1' t 2) his support.

+ C 2 (A t2 + I p O It , 2 + I - C 2 01 2 1 (n l ?1 i ( 0 ) R e/ r cr es

where A and I? are tihe gain and saturation parameters
for tile two-photl on gaii intechatisn and Ci U = I ,2 I I i do .R p. Pro. h\ ,. 43 i14t ) 58.

is tite loss paranmeter for tile ith mode which is related 121 I.l. K iml heand I .Mandel, I'\i .Re\. At - i 1)76fi

to the inode frequency w i and Q of tile cavity by the 2123.
telatio 131 I1IJ. Kimble. M. IIagenais and I. Mandet. I't %,. Re\,

letl. 39 1977) fi.
Ci = ~itl 17) 141 M.S. Z Ubaifl' and U.. Nc h. Pi\) . Rv%. .\21 i I 111"ni

Ci=Wi/Q - 7s d1624.
This equation is difficut to solve even in steady state 151 I1. \'l, .IA . llilila and 1.-IIL Rtl.e. /. Ih ik 13u.

11981 295.

be,'tluse each elenIent pill I • It is coupled tol (11 1 \. k,,iermiv,,ki inld R. I .l% .O I. orlllt ll.

l,1( It IlI + l,/I)andpl1 1, it, + II which 9

represent t io-photon elission lone in each iode). 171 I). Stiler. I'l11vs. Rev, I et. 33 1174) I 39'.
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